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1 Goals

• Learn how to simulate PDEs faster using the proper orthogonal decomposition and the
discrete empirical interpolation method.

• Learn the importance of linear algebra for developing methods for solving PDEs and learn
fundamental proofs in low rank approximation theory.

2 Allen-Cahn Equation

Consider the 1-D Allen-Cahn equation
ut −∆u = f(u), (t, x) ∈ (0, T ]× Ω

u(0, x) = u0(x;µ), x ∈ Ω

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

(1)

where Ω = [0, 1] is our spatial domain, f(u) = u−u3, and u0 is an initial condition parameterized
by some parameter µ ∈ P . Note that f(u) = −F ′(u), where F (u) = (u2 − 1)2/4. See Figure 1
for a visualization of F .
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Figure 1: Plot of the double well potential F (u).

∗Much of these notes is an adaptation of notes from Daniel Kressner’s course on Low Rank Approximation
Techniques.
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3 Discretization

To discretize this equation, consider a number of time steps Nt and let ∆t = T/Nt. Then define
tn = n∆t so that we have [0, T ] discretized by 0 = t0 < t1 < · · · < tNt = T . Similarly discretize
Ω with ∆x = 1/Nx so that xn = n∆x and 0 = x0 < x1 < · · · < xNs = 1.

Now for simplicity, consider the following convex splitting scheme for solving the Allen-Cahn
equation (1):

un+1
j − un

j

∆t
−
u
n+1/2
j+1 − 2u

n+1/2
j + u

n+1/2
j−1

∆x2
= un

j−(un+1
j )3, n = 1, 2, . . . , Nt, j = 1, . . . , Nx−1,

(2)
with an+1/2 = (an + an+1)/2, and

un
0 = un

Nx
= 0 ∀n = 0, 1, 2, . . . , Nt, u0

j = u0(xj;µ) ∀j = 0, 1, . . . , Nx.

Then we can write the solution to (2) and the initial and boundary conditions together as

un+1
h − un

h

∆t
− Au

n+1/2
h = un

h − (un+1
h )3,

where the cube is understood componentwise and

A =

 1 01×(Nx−2) 0
0(Nx−2)×1 B 0(Nx−2)×1

0 01×(Nx−2) 1

 , B =
1

∆x2


−2 1
1 −2 1

1 −2 1
. . .

1 −2

 .

Example solutions are shown in Figure 2.
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Figure 2: Solutions to the discretized Allen-Cahn equation (2) with initial condition u0(x;µ) =
µ1x(x− 1)(x− µ2).

In general, solving a nonlinear PDE with a fine discretization can be very slow, and we may
want solutions for many values of the parameter µ, so we will have to simulate the equation
repeatedly many times. This motivates us to look for ways to approximate our discretization with
something which will be faster to solve.
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4 Proper Orthogonal Decomposition

4.1 General Low Rank Approximation Theory

Definition 1 (Frobenius norm). The Frobenius norm of an m× n matrix A, denoted ∥A∥F , is
defined by

∥A∥F =
√
tr(A⊤A) =

√√√√ m∑
i=1

n∑
j=1

A2
ij.

Exercise 1. Check that ⟨A,B⟩ = tr(A⊤B) defines an inner product on the space of m × n
matrices. In particular, the Frobenius norm is the norm induced by this inner product.

Definition 2 (Rank k Truncation). Given A ∈ Rm×n with SVD A = UΣV ⊤, its rank k truncation
Tk(A) is defined by

Tk(A) = U

[
Σk 0
0 0

]
V ⊤ = UkΣkV

⊤
k ,

where Σk is the diagonal matrix diag(σ1(A), σ2(A), . . . , σk(A)), Uk is the first k columns of U ,
and Vk is the first k columns of V . In other words, we replace all but the first k singular values
in Σ with zeros.

Definition 3 (Spectral Norm). The spectral norm of an m × n matrix A, denoted ∥A∥2, is
defined by

∥A∥2 = sup{∥Ax∥2 : ∥x∥2 ≤ 1} = σmax(A),

where σmax(A) is the maximum singular value of A.

Exercise 2. Show that the second equality in the definition above holds, that ∥A∥F ≤ min(m,n)1/2∥A∥2,
and that ∥A∥2 ≤ ∥A∥F . Hint: SVD and unitary invariance of Euclidean, spectral, and Frobenius
norms.

Then we can compute the error of the rank k truncation of A in the Frobenius norm as

∥A− Tk(A)∥F = ∥UΣV ⊤ − UTk(Σ)V ⊤∥F = ∥Σ− Tk(Σ)∥F =

√√√√min{m,n}∑
i=k+1

σi(A)2

and in the spectral norm as

∥A− Tk(A)∥2 = ∥UΣV ⊤ − UTk(Σ)V ⊤∥2 = ∥Σ− Tk(Σ)∥2 = σk+1(A).

Theorem 1 (Von-Neumann Trace Inequality). For m ≥ n, let A,B ∈ Rm×n have singular values
σ1(A) ≥ · · · ≥ σn(A) and σ1(B) ≥ · · · ≥ σn(B) respectively. Then

|⟨A,B⟩| ≤ σ1(A)σ1(B) + · · ·+ σn(A)σn(B).
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Proof. We first prove the result for

A =

[
Ik 0
0 0

]
.

Indeed, partition

B =

[
B11 B12

B21 B22

]
,

with B11 ∈ Rk×k. Take the SVD of B = UΣV ⊤ and write

U =

[
U1

U2

]
=

[
U11 . . . U1m

∗

]
, V =

[
V1

V2

]
=

[
V11 . . . V1n

∗

]
,

with U1 ∈ Rk×m and V1 ∈ Rk×n. Then

tr(B11) = tr(U1Σ1V
⊤
1 ) = tr(V ⊤

1 U1Σ1) = α1σ1(B) + · · ·+ αnσn(B),

where αj = U⊤
1jV1j. Note that |αj| ≤ ∥U1j∥∥V1j∥ ≤ 1 by the Cauchy-Schwarz inequality. Also,

|⟨U1, V1⟩| ≤ ∥U1∥F∥V1∥F ≤
√
k∥U1∥2 ·

√
k∥V1∥2 ≤ k∥U∥2∥V ∥2 = k.

(Indeed, the last inequality is shown by considering x⊤U⊤Ux = x⊤U⊤
1 U1x + x⊤U⊤

2 U2x ≥
x⊤U⊤

1 U1x and similarly for V .) It follows that

tr(U1V
⊤
1 ) = tr(V ⊤

1 U1) = α1 + · · ·+ αn ≤ k.

Thus,

tr(B11) ≤ max
α1,...,αn≤1:
α1+···+αn≤k

n∑
i=1

αiσi(B) ≤ σ1(B) + · · ·+ σk(B),

since σ1(B) ≥ · · · ≥ σn(B). This proves the special case. Now consider general A.
Take the SVD of A = UAΣAV

⊤
A . Then

⟨A,B⟩ = tr(B⊤UAΣAV
⊤
A ) = ⟨ΣA, U

⊤
ABVA︸ ︷︷ ︸

B̃

⟩,

so without loss of generality,

A = ΣA =

σ1(A)
. . .

σn(A)



= σn(A)

1 . . .

1

+ (σn−1(A)− σn(A))︸ ︷︷ ︸
≥0


1

. . .

1
0



+ · · ·+ (σ1(A)− σ2(A))︸ ︷︷ ︸
≥0


1

0
. . .

0


=

n∑
k=1

αkEk,
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where αk = σk(A)− σk+1(A) (σn+1(A) := 0) and Ek =

[
Ik 0
0 0

]
. We then have

⟨A,B⟩ =

〈
n∑

k=1

αkEk, B

〉
=

n∑
k=1

αk⟨Ek, B⟩

≤
n∑

k=1

(σk(A)− σk+1(A))(σ1(B) + · · ·+ σk(B))

= σ1(A)σ1(B) + · · ·+ σn(A)σn(B),

as desired.

As a consequence of the Von-Neumann trace inequality, we have

∥A−B∥2F = ⟨A−B,A−B⟩
= ∥A∥2F − 2⟨A,B⟩+ ∥B∥2F

≥ ∥A∥2F − 2
n∑

i=1

σi(A)σi(B) + ∥B∥2F

=
n∑

i=1

(σi(A)− σi(B))2.

Theorem 2 (Schmidt-Mirsky). Let A ∈ Rm×n. Then

∥A− Tk(A)∥ = min{∥A−B∥ : B ∈ Rm×n has rank at most k}

holds for any unitarily invariant norm ∥ · ∥.

Proof. (For ∥ · ∥F ). We apply the consequence of the Von-Neumann trace inequality. Indeed, for
any rank k matrix B, we have that σi(B) = 0 for i ≥ k + 1, so

∥A−B∥2F =
k∑

i=1

(σi(A)− σi(B))2 +
n∑

i=k+1

σi(A)
2 ≥

n∑
i=k+1

σi(A)
2 = ∥A− Tk(A)∥2F .

Now say we want to find a matrix Q ∈ Rm×k with orthonormal columns such that

range(Q) = range(A).

Then QQ⊤ is the projection onto range(Q) and I −QQ⊤ is the projection onto range(Q)⊥, i.e.
the projection error. So we want to minimize the projection error

∥(I −QQ⊤)A∥ = ∥A−QQ⊤A∥
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for ∥ · ∥ unitarily invariant, say the Frobenius or spectral norm. Now because rank(QQ⊤) ≤ k,
we have that rank(QQ⊤A) ≤ k, so by Schmidt-Mirsky,

∥A−QQ⊤A∥ ≥ ∥A− Tk(A)∥.

If we take Q = Uk the k left singular vectors of A, we obtain

UkU
⊤
k A = UkU

⊤
k UΣV ⊤ = UkΣkV

⊤
k = Tk(A),

so we see that Q = Uk is optimal.

4.2 Proper Orthogonal Decomposition

Returning to our discretized PDE, we want to represent our solution in a lower dimensional space
in which it might be faster to solve our PDE. The idea is as follows:

1. Simulate the equation (1) for multiple parameters µ using the discretization (2) and collect
the data into the “snapshot” matrix:

S =
[
u0
h(µ1) . . . uNt

h (µ1) . . . u0
h(µp) . . . uNt

h (µp)
]
.

2. Compute SVD of S = UΣV ⊤ and truncate to the rth principal subspace of S with r ≪ Nx

(i.e., retain the first r columns Ur of U).

3. Assume that un
h ≈ UrU

⊤
r u

n
h = Urũ

n and project the discretized PDE onto range(Ur):

ũn+1 − ũn

∆t
− U⊤

r AUrũ
n+1/2 = U⊤

r (Urũ
n − (Urũ

n+1)3). (3)

We’ve already seen that this projection onto range(Ur) is the best rank r linear projection
onto the column space of the snapshot matrix. Now note that U⊤

r AUr is an r × r matrix which
is much smaller than A, so we hope that this equation is faster to solve–the cost of evaluating
U⊤
r AUrũ

n is O(r2) since U⊤
r AUr can be precomputed and saved, while the cost of Aun

h is O(N2
x).

However, the computational complexity of evaluating the nonlinear term on the right hand side
still depends on the large dimension Nx since it cannot be precomputed like the linear term. We
will now look at one method for speeding up the evaluation of the nonlinear term.

5 Discrete Empirical Interpolation

First, we give the main idea of discrete empirical interpolation. Let g be some componentwise
nonlinearity, in an abuse of notation,

g(u1, u2, . . . , uk) = (g(u1), g(u2), . . . , g(uk)).

Here we mean that g acts on components of the vector individually, as in our polynomial non-
linearity in the Allen-Cahn equation. We want an approximation of g that is faster to compute.
Maybe we can select rows to compute and others we skip computing (maybe they are somehow
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able to be approximated from the other components). Let I = {i1, . . . , ik} be some selected
component indices for which we want to compute g and let

S =
[
ei1 . . . eik

]
,

where ei denotes the ith standard basis vector in RNx . Then S⊤g is a k dimensional vector with
components equal to the selected components of g. For example, if Nx = 3 and k = 2 then

S⊤g =

1 0
0 0
0 1

⊤ g1g2
g3

 =

[
g1
g3

]
,

that is, this S selects the first and third components of g. The key observation is that if we take
some suitable projection of g containing S⊤, then we only need to compute the selected indices
of g. Note that if V ∈ RNx×k is some orthonormal basis, then

V (S⊤V )−1S⊤

is an oblique projection onto the column space of V (check (V (S⊤V )−1S⊤)(V (S⊤V )−1S⊤) =
V (S⊤V )−1S⊤). Furthermore, we have that

S⊤(I − V (S⊤V )−1S⊤) = 0,

so ∥S⊤(g − V (S⊤V )−1S⊤g)∥ = 0. This means that g is “interpolated” exactly at the selected
indices in S.

What if we want to control the error more generally? We know that the projection onto the
column space of V with minimal error is V V ⊤. We can control the error of the oblique projection
in terms of this minimal error.

Lemma 1 (Oblique Projection Error). The oblique projection error is bounded as

∥g − V (S⊤V )−1S⊤g∥2 ≤ ∥(S⊤V )−1∥2∥g − V V ⊤g∥2.

Proof. Let Π = V (S⊤V )−1S⊤. Then

∥(I − Π)g∥2 = ∥(I − Π)(g − V V ⊤g)∥2 ≤ ∥I − Π∥2∥g − V V ⊤g∥2.

Noting
∥I − Π∥2 = ∥Π∥2 ≤ ∥(S⊤V )−1S⊤∥2 = ∥(S⊤V )−1∥2

finishes the proof.

Note that for a more quantitative bound relating the oblique projection error to the optimal
projection error, we will need to focus on bounding ∥(S⊤V )−1∥2. Note that this is equivalent to
showing that the smallest singular value of S⊤V is not too small. To show this we will introduce
the following notation.

Given an m× n matrix A and index sets

I = {i1, . . . , ik}, 1 ≤ i1 < i2 < · · · < ik ≤ m,

J = {j1, . . . , jℓ}, 1 ≤ j1 < j2 < · · · < jℓ ≤ n,
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we let

A(I, J) =

ai1,j1 . . . ai1,jℓ
...

...
aik,j1 . . . aik,jℓ

 ∈ Rk×ℓ.

The full index set is denoted by :, e.g. A(I, :).
Then we propose the index selection algorithm given in Algorithm 1.

Algorithm 1 Simplified form of Gaussian elimination with column pivoting
Input: n× r matrix U
Output: “Good” index set I ⊂ {1, . . . , n}, #I = r
Set I = ∅
for k = 1 to r do
Choose i∗ = argmaxi=1,...,n |uik|.
Set I = I ∪ {i∗}.
U ← U − 1

ui∗k
U(:, k)U(i∗, :)

end for

First to get an intuition, we will walk through an example of Gaussian elimination without
column pivoting (Algorithm 2) in case this is way of viewing elimination is new.

Algorithm 2 Gaussian elimination (no pivoting) applied to U ∈ Rn×r

for k = 1 to r do
L(:, k)← 1

Ukk
U(:, k)

R(k, :)← U(k, :)
U ← U − L(:, k)R(k, :)

end for

Let’s see an example of Algorithm 2:

1. Before iteration 1,

L =

0 0 0
0 0 0
0 0 0

 , R =

0 0 0
0 0 0
0 0 0

 , U =

1 2 3
4 5 4
3 2 1


2. Before iteration 2

L =

1 0 0
4 0 0
3 0 0

 , R =

1 2 3
0 0 0
0 0 0

 , U =

0 0 0
0 −3 −8
0 −4 −8


3. Before iteration 3

L =

1 0 0
4 1 0
3 4/3 0

 , R =

1 2 3
0 −3 −8
0 0 0

 , U =

0 0 0
0 0 0
0 0 8/3


8
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4. After iteration 3

L =

1 0 0
4 1 0
3 4/3 1

 , R =

1 2 3
0 −3 −8
0 0 8/3

 , U =

0 0 0
0 0 0
0 0 0

 .

So if we swap the rows in our matrix so that the column pivoting Algorithm 1 chooses indices in
order 1, 2, 3, . . . , then we see that Algorithm 1 will result in a factorization

PU = LR,

where

• P is a permutation matrix,

• L =

[
L11

L21

]
with L11 ∈ Rr×r unit lower triangular and maxLij ≤ 1,

• R ∈ Rr×r is upper triangular.

We will use this factorization and the following lemma to prove a bound on the smallest singular
value of the matrix resulting from the row selection algorithm.

Lemma 2 (Theorem 8.15 in Higham, 2002). Let T ∈ Rn×n be an upper triangular matrix
satisfying

|tii| > |tij| for j > i.

Then

1 ≤ min
i
|tii| · ∥T−1∥2 ≤

1

3

√
4n + 6n− 1 ≤ 2n−1.

Theorem 3 (Row Selection Bound on Smallest Singular Value). For the index set returned by
the greedy algorithm applied to orthonormal U ∈ Rn×r, it holds that

∥U(I, :)−1∥2 ≤
√
nr2r−1.

Proof. Assuming without loss of generality that I = {1, 2, . . . , r}, we start from

PU = LR. (4)

Partitioning L =

[
L1

L2

]
with L1 ∈ Rr×r, the factorization (4) implies

U(I, :) = L1R.

Because PU is orthonormal, (4) also implies ∥R−1∥2 = ∥L∥2 so that

∥U(I, :)−1∥2 ≤ ∥L−1
1 ∥2∥R−1∥2 = ∥L−1

1 ∥2∥L∥2.

Because the magnitudes of the entries of L are bounded by 1, we have

∥L∥2 ≤ ∥L∥F ≤
√
nrmax |Lij| ≤

√
nr.

Applying Lemma 2 to L⊤
1 in order to bound ∥L−1

1 ∥2 completes the proof.
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Back to DEIM. We saw that we wanted to bound ∥(S⊤V )−1∥2. The theorem we just proved
gives us a bound if we choose S so that S⊤V = V (I, :) with I coming from Algorithm 1. Thus
we will take V to be some left singular vectors of snapshots of our nonlinear term then apply
Algorithm 1 to this basis. We summarize DEIM below:

1. Form the snapshot matrix of our nonlinearity:

G =
[
g(u0

h(µ1)) . . . g(uNt
h (µ1)) . . . g(u0

h(µp)) . . . g(uNt
h (µp))

]
.

2. Compute SVD of G = V ΣQ⊤ and truncate to the rth principal subspace of G with r′ ≪ Nx

(i.e., retain the first r′ columns Vr′ of V ).

3. Apply Algorithm 1 to Vr′ to obtain an index set I = {i1, i2, . . . , ir′}, and let

S =
[
ei1 . . . eir′

]
.

4. Approximate
g(u) ≈ Vr′(S⊤Vr′)

−1S⊤g(u).

Since g acts componentwise, this approximation only needs to compute r′ components of g, which
is where the speedup comes from. Because in our POD we actually compute U⊤

r Vr′(S⊤Vr′)
−1S⊤g(u),

we can store the matrix U⊤
r Vr′(S⊤Vr′)

−1 ∈ Rr×r′ , which is small, then we multiply this by the r′

selected rows of g, making the cost of evaluating this approximation O(rr′) (assuming the g is
approximated in O(1) time). Thus, our final reduced order model for the Allen-Cahn equation is

ũn+1 − ũn

∆t
− U⊤

r AUrũ
n+1/2 = U⊤

r Vr′(S⊤Vr′)
−1S⊤(Urũ

n − (Urũ
n+1)3).
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